Datta, G. S. ; Ghosh, J. K. (1995) Noninformative priors for maximal invariant parameter in group models Test, 4 (1). pp. 95-114. ISSN 1133-0686
Full text not available from this repository.
Official URL: http://www.springerlink.com/content/cm53838v56041t...
Related URL: http://dx.doi.org/10.1007/BF02563105
Abstract
For an Euclidean groupG acting freely on the parameter space, we derive, among several noninformative priors, the reference priors of Berger-Bernardo and Chang-Eaves for our parameter of interest θ1, a scalar maximal invariant parametric function. Identifying the nuisance parameter vector with the group element, we derive a simple structure of the information matrix which is used to obtain different noninformative priors. We compare these priors using the marginalization paradox and the probability-matching criteria. The Chang-Eaves and the Berger-Bernardo reference priors appear to be the most attractive choice. Several illustrative examples are considered.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Springer-Verlag. |
Keywords: | Right Invariant Haar Density; Left Invariant Haar Density; Reference Prior; Information Matrix; Marginalization Paradox; Probability-matching prior |
ID Code: | 22626 |
Deposited On: | 24 Nov 2010 08:07 |
Last Modified: | 02 Jun 2011 07:04 |
Repository Staff Only: item control page