Grain-size distribution effects in plastic flow and failure

Phaniraj, M. P. ; Prasad, M. J. N. V. ; Chokshi, Atul Harish (2007) Grain-size distribution effects in plastic flow and failure Materials Science and Engineering: A - Structural Materials - Properties, Microstructure and Processing, 463 (1-2). pp. 231-237. ISSN 0921-5093

Full text not available from this repository.

Official URL: http://linkinghub.elsevier.com/retrieve/pii/S09215...

Related URL: http://dx.doi.org/10.1016/j.msea.2006.08.116

Abstract

There has been considerable success over the past five decades in developing a phenomenological and micromechanism-based understanding of plastic flow, creep and superplasticity. Although it is widely known that grain sizes have a distribution in polycrystals and nanocrystals, this factor is usually not included in most analysis of deformation and failure. Experimental observations relating to the influence of grain size distributions are discussed briefly, and an analysis is developed to consider the influence of this factor on the transition from grain boundary strengthening to grain boundary weakening in nanocrystalline materials. The transition from grain boundary strengthening to weakening becomes broader with an increase in the standard deviation of the grain size distribution. It is demonstrated that the observed standard deviations for grain size distributions and nominal errors in grain size measurements can lead to substantially different experimental observations under nominally identical conditions.

Item Type:Article
Source:Copyright of this article belongs to Elsevier Science.
Keywords:Grain size distribution; Diffusion creep; Hall-petch strengthening; Nanocrystals
ID Code:22389
Deposited On:25 Nov 2010 14:12
Last Modified:03 Feb 2011 12:00

Repository Staff Only: item control page