Gulati, Abhilasha ; Mahadevan, Subramony (2000) Mechanism of catabolite repression in the bgl operon of Escherichia coli: involvement of the anti-terminator BglG, CRP-cAMP and EIIAGlc in mediating glucose effect downstream of transcription initiation Genes to Cells, 5 (4). pp. 239-250. ISSN 1356-9597
|
PDF
- Publisher Version
299kB |
Official URL: http://onlinelibrary.wiley.com/doi/10.1046/j.1365-...
Related URL: http://dx.doi.org/10.1046/j.1365-2443.2000.00322.x
Abstract
Background: Expression of the bgl operon of Escherichia coli, involved in the regulated uptake and utilization of aromatic β-glucosides, is extremely sensitive to the presence of glucose in the growth medium. We have analysed the mechanism by which glucose exerts its inhibitory effect on bgl expression. Results: Our studies show that initiation of transcription from the bgl promoter is only marginally sensitive to glucose. Instead, glucose exerts a more significant inhibition on the elongation of transcription beyond the rho-independent terminator present within the leader sequence. Transcriptional analyses using plasmids that carry mutations in bglG or within the terminator, suggest that the target for glucose-mediated repression is the anti-terminator protein, BglG. Introduction of multiple copies of bglG or the presence of mutations that inhibit its phosphorylation by Enzyme IIBgl (BglF), result in loss of glucose repression. Studies using crp, cya and crr strains show that both CRP-cAMP and the Enzyme IIAGlc (EIIAGlc) are involved in the regulation. Although transcription initiation is normal in a crp, cya double mutant, no detectable transcription is seen downstream of the terminator, which is restored by a mutation within the terminator. Transcription past the terminator is also partly restored by the addition of exogenous cAMP to glucose-grown cultures of a crp+ strain. Glucose repression is lost in the crr mutant strain. Conclusions: The results summarized above indicate that glucose repression in the bgl operon is mediated at the level of transcription anti-termination, and glucose affects the activity of BglG by altering its phosphorylation by BglF. The CRP-cAMP complex is also involved in this regulation. The results using the crr mutant suggest a negative role for EIIAGlc in the catabolite repression of the bgl genes.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Molecular Biology Society of Japan. |
ID Code: | 20742 |
Deposited On: | 20 Nov 2010 13:38 |
Last Modified: | 17 May 2016 05:00 |
Repository Staff Only: item control page