Mandal, Asit B. ; Ramesh, D. Vijaya ; Dhar, Susil C. (1987) Physico-chemical studies of micelle formation on sepia cartilage collagen solutions in acetate buffer and its interaction with ionic and nonionic micelles European Journal of Biochemistry, 169 (3). pp. 617-628. ISSN 0014-2956
|
PDF
- Publisher Version
1MB |
Official URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1432-...
Related URL: http://dx.doi.org/10.1111/j.1432-1033.1987.tb13653.x
Abstract
Sepia cartilage collagen (pepsin-extracted) in acetate buffer (pH = 2.98) forms micelles at a particular concentration below which they do not normally form. The critical micelle concentration (cmc) of the collagen was determined in buffer as well as in SDS, cetyltrimethylammonium bromide (CTAB) and Tween-80 micellar environments at different temperatures. Mutual interaction of collagen micelles with the ionic and nonionic micelles through the formation of the mixed micelle concept has also been found. The cmc of collagen decreased in the presence of SDS and Tween-80 micelles whereas it increased in the presence of CTAB micelles. This clearly suggests that the micelle formation of collagen is facilitated by the presence of SDS and Tween-80 and hindered by CTAB micelles. The various thermodynamic parameters were estimated from viscosity measurements and the transfer of collagen into the micelles of various surfactants and the reverse phenomenon was analyzed. This analysis has also been modelled conceptually as a different phase and the results have supported the above phenomenon. Our thermodynamic results are also able to predict the exact denaturation temperature as well as the structural order of water in the collagen in various environments. The hydrated volumes, Vh, of collagen in the above environments and intrinsic viscosity were also calculated. The low intrinsic viscosity, [η], of collagen in an SDS environment compared to buffer and other surfactant environments suggested more workable systems in cosmetic and dermatological skin care preparations. The one and two-hydrogen-bonded models of this collagen in various environments have been analyzed. The calculated thermodynamic parameters varied with the concentration of collagen. The change of thermodynamic parameters from coil-coil to random-coil conformation upon denaturation of collagen were calculated from the amount of proline and hydroxyproline residues and compared with viscometric results. Thermodynamic results suggest that the stability of the collagen in the additive environments is in the following order: SDS > Tween-80 > buffer > CTAB.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to John Wiley & Sons, Inc. |
ID Code: | 19502 |
Deposited On: | 22 Nov 2010 12:29 |
Last Modified: | 17 May 2016 04:02 |
Repository Staff Only: item control page