Phase-integral approach to quantal two-and three-dimensional isotropic anharmonic oscillators

Lakshmanan, M. ; Kaliappan, P. ; Larsson, K. ; Karlsson, F. ; Froman, P. O. (1994) Phase-integral approach to quantal two-and three-dimensional isotropic anharmonic oscillators Physical Review A, 49 (5). pp. 3296-3309. ISSN 1050-2947

Full text not available from this repository.

Official URL: http://link.aps.org/doi/10.1103/PhysRevA.49.3296

Related URL: http://dx.doi.org/10.1103/PhysRevA.49.3296

Abstract

A two- or three-dimensional quantal isotropic anharmonic oscillator is treated by means of the phase-integral method of Froman and Froman. The generalized Bohr-Sommerfeld quantization condition for the radial wave function is expressed in terms of complete elliptic integrals up to the fifth order of the phase-integral approximation. The quantization condition is solved numerically, and energy levels are obtained for various quantum numbers. Comprison with numerically exact results is also made.

Item Type:Article
Source:Copyright of this article belongs to American Physical Society.
ID Code:19459
Deposited On:22 Nov 2010 12:34
Last Modified:07 Jun 2011 06:47

Repository Staff Only: item control page