Radha, R. ; Lakshmanan, M. (1994) Singularity analysis and localized coherent structures in (2+ 1)-dimensional generalized Korteweg-de Vries equations Journal of Mathematical Physics, 35 (9). pp. 4746-4756. ISSN 0022-2488
Full text not available from this repository.
Official URL: http://link.aip.org/link/?JMAPAQ/35/4746/1
Related URL: http://dx.doi.org/10.1063/1.530812
Abstract
In this article, a singularity structure analysis of a (2+1)-dimensional generalized Korteweg-de Vries equation studied originally by Boiti et al., admitting a weak Lax pair, is carried out and it is proven that the system satisfies the Painleve property. Its bilinear form is constructed in a natural way from the P analysis and then it is used to generate "multidromion" solutions (exponentially decaying solutions in all directions). The same analysis can be extended to construct the multidromion solutions of the generalized Nizhnik-Novikov-Veselov (NNV) equation from which the NNV equation follows as a special case.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to American Institute of Physics. |
ID Code: | 19336 |
Deposited On: | 22 Nov 2010 12:46 |
Last Modified: | 07 Jun 2011 06:46 |
Repository Staff Only: item control page