Inositol methyl tranferase from a halophytic wild rice, Porteresia coarctata Roxb. (Tateoka): regulation of pinitol synthesis under abiotic stress

Sengupta, Sonali ; Patra, Barunava ; Ray, Sudipta ; Lahiri Majumder, Arun (2008) Inositol methyl tranferase from a halophytic wild rice, Porteresia coarctata Roxb. (Tateoka): regulation of pinitol synthesis under abiotic stress Plant, Cell & Environment, 31 (10). pp. 1442-1459. ISSN 0140-7791

Full text not available from this repository.

Official URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-...

Related URL: http://dx.doi.org/10.1111/j.1365-3040.2008.01850.x

Abstract

Methylated inositol D-pinitol (3-O-methyl-D-chiro-inositol) accumulates in a number of plants naturally or in response to stress. Here, we present evidence for accumulation and salt-enhanced synthesis of pinitol in Porteresia coarctata, a halophytic wild rice, in contrast to its absence in domesticated rice. A cDNA for Porteresia coarctata inositol methyl transferase 1 (PcIMT1), coding for the inositol methyl transferase implicated in the synthesis of pinitol has been cloned from P. coarctata, bacterially overexpressed and shown to be functional in vitro. In silico analysis confirms the absence of an IMT1 homolog in Oryza genome, and PcIMT1 is identified as phylogenetically remotely related to the methyl transferase gene family in rice. Both transcript and proteomic analysis show the up-regulation of PcIMT1 expression following exposure to salinity. Coordinated expression of L-myo-inositol 1-phosphate synthase (PcINO1) gene along with PcIMT1 indicates that in P. coarctata, accumulation of pinitol via inositol is a stress-regulated pathway. The presence of pinitol synthesizing protein/gene in a wild halophytic rice is remarkable, although its exact role in salt tolerance of P. coarctata cannot be currently ascertained. The enhanced synthesis of pinitol in Porteresia under stress may be one of the adaptive features employed by the plant in addition to its known salt-exclusion mechanism.

Item Type:Article
Source:Copyright of this article belongs to John Wiley and Sons, Inc.
Keywords:Inositol Methyl Transferase 1
ID Code:19241
Deposited On:23 Nov 2010 13:16
Last Modified:04 Jun 2011 11:29

Repository Staff Only: item control page