Five-fold way to new high Tc superconductors

Baskaran, G. (2009) Five-fold way to new high Tc superconductors Pramana - Journal of Physics, 73 (1). pp. 61-112. ISSN 0304-4289

[img]
Preview
PDF - Publisher Version
2MB

Official URL: http://www.ias.ac.in/pramana/v73/p61/fulltext.pdf

Related URL: http://dx.doi.org/10.1007/s12043-009-0094-8

Abstract

Discovery of high T c superconductivity in La2-x Ba x CuO4 by Bednorz and Muller in 1986 was a breakthrough in the 75-year long search for new superconductors. Since then new high T c superconductors, not involving copper, have also been discovered. Superconductivity in cuprates also inspired resonating valence bond (RVB) mechanism of superconductivity. In turn, RVB theory provided a new hope for finding new superconductors through a novel electronic mechanism. This article first reviews an electron correlation-based RVB mechanism and our own application of these ideas to some new noncuprate superconducting families. In the process we abstract, using available phenomenology and RVB theory, that there are five directions to search for new high T c superconductors. We call them five-fold way. As the paths are reasonably exclusive and well-defined, they provide more guided opportunities, than before, for discovering new superconductors. The five-fold ways are (i) copper route, (ii) pressure route, (iii) diamond route, (iv) graphene route and (v) double RVB route. Copper route is the doped spin-½ Mott insulator route. In this route one synthesizes new spin-½ Mott insulators and dopes them chemically. In pressure route, doping is not external, but internal, a (chemical or external) pressure-induced self-doping suggested by organic ET-salts. In the diamond route we are inspired by superconductivity in boron-doped diamond and our theory. Here one creates impurity band Mott insulators in a band insulator template that enables superconductivity. Graphene route follows from our recent suggestion of superconductivity in doped graphene, a two-dimensional broadband metal with moderate electron correlations, compared to cuprates. Double RVB route follows from our recent theory of doped spin-1 Mott insulator for superconductivity in iron pnictide family.

Item Type:Article
Source:Copyright of this article belongs to Indian Academy of Sciences.
Keywords:High T Superconductivity; Resonating Valence Bond Theory; Cuprates; Organics; Boron-doped Diamond; Graphene; Fe Pnictide Superconductors
ID Code:1870
Deposited On:08 Oct 2010 11:52
Last Modified:16 May 2016 12:55

Repository Staff Only: item control page