Preparation of microporous vanadium pentoxide membrane electrodes by phase inversion

Gordon, R. D. ; Kulkarni, M. G. ; Cussler, E. L. (1997) Preparation of microporous vanadium pentoxide membrane electrodes by phase inversion Journal of Membrane Science, 127 (2). pp. 153-160. ISSN 0376-7388

Full text not available from this repository.

Official URL: http://linkinghub.elsevier.com/retrieve/pii/S03767...

Related URL: http://dx.doi.org/10.1016/S0376-7388(96)00262-1

Abstract

Two methods were developed to create microporous membranes of vanadium pentoxide (V2O5). In one method, the membranes were made from aqueous solutions of V2O5 polymers by phase inversion in acetone. Subsequent supercritical drying removed liquid from the pores to yield a V2O5 aerogel with a specific surface area of 165±30 m2/g and a mean pore diameter near 50 nm. However, air-drying destroyed the pore structure to produce a dense V2O5 xerogel with a surface area under 10 m2/g. The second method eliminated the need for supercritical drying. The phase inversion of aqueous solutions of V2O5 polymers now occurred in a mixture of acetone and propylene carbonate. Partial air-drying removed the acetone, but not the liquid propylene carbonate. The resulting V2O5 was a wet gel with a specific surface area of 270±70 m2/g and a mean pore diameter near 40 nm. Scanning electron micrographs of the V2O5 gels made by the first and second method showed similar microstructures with randomly entangled fibers. Electrochemical characterization of both materials suggested their performance as cathodes in lithium batteries is limited by electronic conductivity rather than lithium diffusion.

Item Type:Article
Source:Copyright of this article belongs to Elsevier Science.
Keywords:Batteries; Hydrogels; Membrane Electrodes
ID Code:17144
Deposited On:16 Nov 2010 08:22
Last Modified:04 Jun 2011 08:24

Repository Staff Only: item control page