Distinctive features in the structure and dynamics of the DNA repeat sequence GGCGGG

Bhavesh, Neel S. ; Patel, Prasanta K. ; Karthikeyan, S. ; Hosur, Ramakrishna V. (2004) Distinctive features in the structure and dynamics of the DNA repeat sequence GGCGGG Biochemical and Biophysical Research Communications, 317 (2). pp. 625-633. ISSN 0006-291X

Full text not available from this repository.

Official URL: http://linkinghub.elsevier.com/retrieve/pii/S00062...

Related URL: http://dx.doi.org/10.1016/j.bbrc.2004.03.095

Abstract

G-rich DNA has been known to form a variety of folded and multistranded structures, with even single base modifications causing important structural changes. But, very little is known about the dynamic characteristics of the structures, which may play crucial roles in facilitating the structural transitions. In this background, we report here NMR investigations on the structure and dynamics of a DNA repeat sequence GGCGGG in aqueous solution containing Na+ ions at neutral pH. The chosen sequence d-TGGCGGGT forms a parallel quadruplex with a C-tetrad in the middle, formed by symmetrical pairing of four Cs in a plane via NH2-O2 H-bonds. 13C relaxation measurements at natural abundance for C1' sugar carbons provided valuable insight into the sequence specific dynamism of G and C-tetrads in the quadruplex. The C4 tetrad seems to introduce high conformational dynamism at milli- to micro-second time scale in the quadruplex. Concomitantly, there is a decrease in the pico-second time scale dynamics. Interestingly, these effects are seen more prominently at the G-tetrads on the 3' end of C-tetrad than on its 5' end. These observations would have important implications for the roles the tetrads may play in many biological functions.

Item Type:Article
Source:Copyright of this article belongs to Elsevier Science.
Keywords:DNA; Quadruplex; C-tetrad; NMR; Dynamics; Structure
ID Code:16643
Deposited On:15 Nov 2010 13:31
Last Modified:03 Jun 2011 08:55

Repository Staff Only: item control page