What makes eyespots intimidating–the importance of pairedness

Mukherjee, Ritwika ; Kodandaramaiah, Ullasa (2015) What makes eyespots intimidating–the importance of pairedness BMC Evolutionary Biology, 15 (1). ISSN 1471-2148

Full text not available from this repository.

Official URL: https://doi.org/10.1186/s12862-015-0307-3

Related URL: http://dx.doi.org/10.1186/s12862-015-0307-3

Abstract

Background Many butterflies possess striking structures called eyespots on their wings, and several studies have sought to understand the selective forces that have shaped their evolution. Work over the last decade has shown that a major function of eyespots is their ability to reduce predation by being intimidating to attacking predators. Two competing hypotheses seek to explain the cause of intimidation, one suggesting ‘eye-mimicry’ and the other their ‘conspicuousness’ as the reason. There is an on-going debate about which of these better explains the effectiveness of eyespots against predation. We undertook a series of indoor experiments to understand the relative importance of conspicuousness and eye-mimicry, and therefore how predator perception may have influenced the evolution of eyespots. We conducted choice tests where artificial paper models mimicking Junonia almana butterflies were presented to chickens and their preference of attack recorded. Results We first established that birds avoided models with a pair of eyespots. However, contrary to previous, outdoor experiments, we found that the total area of eyespots did not affect their effectiveness. Non-eye-like, fan shaped patterns derived from eyespots were found to be just as effective as eye-like circular patterns. Furthermore, we did not find a significant effect of symmetry of patterns, again in discordance with previous work. However, across all experiments, models with a pair of patterns, symmetric or asymmetric, eyelike or non-eye-like, suffered from fewer attacks compared with other models. Conclusions The study highlights the importance of pairedness of eyespots, and supports the hypothesis that two is a biologically significant number that is important in prey–predator signalling. We discuss the implications of our results for the understanding of eyespot evolution.

Item Type:Article
Source:Copyright of this article belongs to BioMed Central Ltd.
Keywords:Eyespots; Conspicuousness; Eye-mimicry; Intimidation; Startle display; Junonia almana.
ID Code:142004
Deposited On:30 Dec 2025 12:33
Last Modified:30 Dec 2025 12:33

Repository Staff Only: item control page