GA Guided Cluster Based Fuzzy Decision Tree for Reactive Ion Etching Modeling: A Data Mining Approach

Shukla, Sanjay Kumar ; Tiwari, Manoj Kumar (2012) GA Guided Cluster Based Fuzzy Decision Tree for Reactive Ion Etching Modeling: A Data Mining Approach IEEE Transactions on Semiconductor Manufacturing, 25 (1). pp. 45-56. ISSN 0894-6507

Full text not available from this repository.

Official URL: https://doi.org/10.1109/TSM.2011.2173372

Related URL: http://dx.doi.org/10.1109/TSM.2011.2173372

Abstract

There are various data mining techniques that are frequently used for the mining of vital patterns embedded within bulk data. These techniques include neural network, regression analysis, rough set theory, Bayesian network, decision trees, and so on. In this research, a novel data mining technique, genetically guided cluster based fuzzy decision tree (GCFDT), is introduced for the mining task. In order to test the efficacy of GCFDT, it is employed for building the predictive process models of reactive ion etching (RIE) with the aid of optical emission spectroscopy (OES) signals. This model endeavors to predict the wafer surface conditions for the new incoming set of process parameters. OES is an efficient tool for monitoring plasma emission intensity. In contrast with the C-fuzzy decision tree where granules are devolved through fuzzy clustering here, granulation is practised through genetically guided fuzzy clustering. The growth of the tree is governed by expanding the node having highest diversity. The results obtained by employing CGFDT in RIE process modeling reveal that it dominates both the traditional C-fuzzy decision trees and C4.5 decision trees in terms of both the accuracy and compactness.

Item Type:Article
Source:Copyright of this article belongs to Institute of Electrical and Electronic Engineers.
Keywords:Decision Trees; Data Mining; Etching; Genetic Algorithms; Clustering Algorithms; Indexes
ID Code:139804
Deposited On:11 Sep 2025 12:26
Last Modified:11 Sep 2025 12:26

Repository Staff Only: item control page