Multifunctional suture coating for combating surgical site infections and mitigating associated complications

Ghosh, Sreyan ; Patra, Dipanjana ; Mukherjee, Riya ; Biswas, Sucheta ; Haldar, Jayanta (2024) Multifunctional suture coating for combating surgical site infections and mitigating associated complications ACS Applied Bio Materials, 7 (2). pp. 1158-1168. ISSN 2576-6422

Full text not available from this repository.

Official URL: http://doi.org/10.1021/acsabm.3c01060

Related URL: http://dx.doi.org/10.1021/acsabm.3c01060

Abstract

Despite advancements in preventive measures and hospital protocols, surgical site infections (SSIs) remain a significant concern following surgeries. Sutures, commonly used for wound closure, can serve as a platform for microbial adherence and contamination, leading to extensive debridement and recurrent antibiotic therapy. The emergence of drug resistance and the formation of biofilms on sutures have further complicated the management of SSIs. Drug-eluting sutures incorporating biocides like triclosan have limitations due to uncontrolled release and associated toxicity. Therefore, there is a need for alternative approaches to impart antimicrobial properties to sutures. In this study, we present a one-step covalent cross-linking method to coat surgical sutures with an antimicrobial small molecule, quaternary benzophenone-based antimicrobial (QSM). Additionally, the sutures are dip-coated with ibuprofen, a nonsteroidal anti-inflammatory drug with analgesic properties. The coated sutures maintained their morphological and tensile properties after in vivo implantation. The antimicrobial coating demonstrated efficacy against a broad-spectrum pathogens, including drug-resistant bacteria and fungi. The optimized formulation retained its biodegradability in vivo. Furthermore, the coated sutures exhibited ∼3 log reduction in methicillin-resistant Staphylococcus aureus (MRSA) burden in a subcutaneous implantation mouse model. Overall, this multifunctional coating provides antimicrobial properties to surgical sutures while preserving their mechanical integrity and biodegradability. These coated sutures have the potential to address the challenge of SSIs and contribute to improved surgical outcomes.

Item Type:Article
Source:Copyright of this article belongs to American Chemical Society.
Keywords:Antimicrobial; Sutures; Antimicrobial Resistance; Surgical Site Infections; Covalent Coating
ID Code:137256
Deposited On:05 Sep 2025 05:55
Last Modified:05 Sep 2025 05:55

Repository Staff Only: item control page