Galois self-dual cuspidal types and Asai local factors

Anandavardhanan, U. K. ; Kurinczuk, R. ; Matringe, Nadir ; Secherre, Vincent ; Stevens, Shaun (2021) Galois self-dual cuspidal types and Asai local factors Journal of the European Mathematical Society, 23 (9). pp. 3129-3191. ISSN 1435-9855

[img] PDF
445kB

Official URL: http://doi.org/10.4171/JEMS/1080

Related URL: http://dx.doi.org/10.4171/JEMS/1080

Abstract

Let F/Fo be a quadratic extension of non-archimedean locally compact fields of odd residual characteristic and σ be its non-trivial automorphism. We show that any σ-self-dual cuspidal representation of GLn(F) contains a σ-self-dual Bushnell--Kutzko type. Using such a type, we construct an explicit test vector for Flicker's local Asai L-function of a GLn(Fo)-distinguished cuspidal representation and compute the associated Asai root number. Finally, by using global methods, we compare this root number to Langlands--Shahidi's local Asai root number, and more generally we compare the corresponding epsilon factors for any cuspidal representation.

Item Type:Article
Source:Copyright of this article belongs to Journal of the European Mathematical Society.
Keywords:Asai Local Factor; Distinction; Root Number; Test Vector; Type Theory
ID Code:135957
Deposited On:19 May 2025 07:43
Last Modified:19 May 2025 07:43

Repository Staff Only: item control page