The LIGO Scientific Collaboration} and The Virgo Collaboration a, . ; Vecchio, Alberto ; Smetana, Jiri ; Buscicchio, Riccardo ; Prokhorov, Leonid ; Agatsuma, Kazuhiro ; Ubhi, Amit ; Pratten, Geraint ; Mow-Lowry, Conor ; Maggiore, Riccardo ; Moore, Chris ; Stops, David ; Zhang, Teng ; Schmidt, Patricia ; Bose, Sukanta (2022) Tests of general relativity with GWTC-3 Physical Review D (Particles, Fields, Gravitation and Cosmology) . ISSN 2470-0029
PDF
3MB |
Official URL: https://arxiv.org/pdf/2112.06861
Abstract
The ever-increasing number of detections of gravitational waves (GWs) from compact binaries by the Advanced LIGO and Advanced Virgo detectors allows us to perform ever-more sensitive tests of general relativity (GR) in the dynamical and strong-field regime of gravity. We perform a suite of tests of GR using the compact binary signals observed during the second half of the third observing run of those detectors. We restrict our analysis to the 15 confident signals that have false alarm rates ≤10−3yr−1. In addition to signals consistent with binary black hole (BH) mergers, the new events include GW200115042309, a signal consistent with a neutron star--BH merger. We find the residual power, after subtracting the best fit waveform from the data for each event, to be consistent with the detector noise. Additionally, we find all the post-Newtonian deformation coefficients to be consistent with the predictions from GR, with an improvement by a factor of ~2 in the -1PN parameter. We also find that the spin-induced quadrupole moments of the binary BH constituents are consistent with those of Kerr BHs in GR. We find no evidence for dispersion of GWs, non-GR modes of polarization, or post-merger echoes in the events that were analyzed. We update the bound on the mass of the graviton, at 90 credibility, to mg≤1.27×10−23eV/c2. The final mass and final spin as inferred from the pre-merger and post-merger parts of the waveform are consistent with each other. The studies of the properties of the remnant BHs, including deviations of the quasi-normal mode frequencies and damping times, show consistency with the predictions of GR. In addition to considering signals individually, we also combine results from the catalog of GW signals to calculate more precise population constraints. We find no evidence in support of physics beyond GR.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to American Institute of Physics. |
ID Code: | 134845 |
Deposited On: | 13 Jan 2023 06:28 |
Last Modified: | 13 Jan 2023 06:28 |
Repository Staff Only: item control page