Ganguly, Shinjini ; Chandra, Ayan ; Chattopadhyay, Dhruba J. ; Chatterjee, Indu B. (2017) p-Benzoquinone initiates non-invasive urothelial cancer through aberrant tyrosine phosphorylation of EGFR, MAP kinase activation and cell cycle deregulation: Prevention by vitamin C Toxicology Reports, 4 . pp. 296-305. ISSN 22147500
Full text not available from this repository.
Official URL: http://doi.org/10.1016/j.toxrep.2017.06.005
Related URL: http://dx.doi.org/10.1016/j.toxrep.2017.06.005
Abstract
According to WHO classification system, non-invasive urothelial carcinoma represents urothelial carcinoma in situ (CIS) and dysplasia. Dysplastic urothelium often progresses to CIS that further advances to urothelial carcinoma (UC). The strongest risk factor for UC is cigarette smoking. However, the pathogenesis of cigarette smoke (CS)-induced UC is poorly understood. Earlier we had shown that p-benzoquinone (p-BQ), a major toxic quinone derived from p-benzosemiquinone of CS in vivo, is a causative factor for various CS-induced diseases. Here, using a guinea pig model we showed that prolonged treatment with p-BQ led to non-invasive UC, specifically carcinoma in situ (CIS) of the renal pelvis and dysplasia in the ureter and bladder. The mechanisms of carcinogenesis were p-BQ-induced oxidative damage and apoptosis that were later suppressed and followed by activation of epidermal growth factor receptor, aberrant phosphorylation of intracellular tyrosine residues, activation of MAP kinase pathway and persistent growth signaling. This was accompanied by deregulation of cell cycle as shown by marked decrease in the expression of p21waf1/cip1 and cyclin D1 proteins as well as hyperphosphorylation of pRb. UC has been characterised by histopathology and immunohistochemistry showing aberrant CK20, increased Ki-67, and marked p53 nuclear immunopositivity with uniformly negative labelling of CD44. Oral supplementation of vitamin C (30 mg/kg body weight/day) prevented CIS of the renal pelvis and dysplasia in the ureter and bladder. Since majority of non-invasive UC progresses to invasive cancer with increased risk of mortality, our preclinical study might help to devise effective strategies for early intervention of the disease.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Elsevier Ireland Ltd |
Keywords: | p-Benzoquinone;Carcinoma in situ;Dysplasia;Aberrant EGFR activation;Cell cycle deregulation;Vitamin C |
ID Code: | 132472 |
Deposited On: | 19 Dec 2022 04:26 |
Last Modified: | 19 Dec 2022 04:26 |
Repository Staff Only: item control page