ELmojtaba, Ibrahim ; Biswas, Santanu ; Chattopadhyay, Joydev (2017) Global Analysis and Optimal Control of a Periodic Visceral Leishmaniasis Model Mathematics, 5 (4). p. 80. ISSN 2227-7390
Full text not available from this repository.
Official URL: http://doi.org/10.3390/math5040080
Related URL: http://dx.doi.org/10.3390/math5040080
Abstract
In this paper, we propose and analyze a mathematical model for the dynamics of visceral leishmaniasis with seasonality. Our results show that the disease-free equilibrium is globally asymptotically stable under certain conditions when R0, the basic reproduction number, is less than unity. When R0>1 and under some conditions, then our system has a unique positive ω-periodic solution that is globally asymptotically stable. Applying two controls, vaccination and treatment, to our model forces the system to be non-periodic, and all fractions of infected populations settle on a very low level.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to MDPI |
ID Code: | 132205 |
Deposited On: | 14 Dec 2022 10:06 |
Last Modified: | 14 Dec 2022 10:06 |
Repository Staff Only: item control page