Athreya, Siva ; Ramachandran, Koushik (2017) Harnack Inequality for Non-Local Schrödinger Operators Potential Analysis, 48 (4). pp. 515-551. ISSN 0926-2601
Full text not available from this repository.
Official URL: http://doi.org/10.1007/s11118-017-9646-6
Related URL: http://dx.doi.org/10.1007/s11118-017-9646-6
Abstract
Let $x \in\mathbb{R}^d$, $d \geq 3,$ and $f: \mathbb{R}^d \rightarrow \R$ be twice differentiable function with all second partial derivatives being continuous. For $1\leq i,j\leq d$, let $a_{ij} : \mathbb{R}^d \rightarrow \R$ be a differentiable function with all partial derivatives being continuous and bounded. We shall consider the Schr\"odinger operator associated to \begin{eqnarray*} \mathcal{L}f(x) &=& \frac12 \sum_{i=1}^d \sum_{j=1}^d \frac{\partial}{\partial x_i} \left(a_{ij}(\cdot) \frac{\partial f}{\partial x_j}\right)(x) + \int_{\mathbb{R}^d\setminus{\{0\}}} [f(y) - f(x) ]J(x,y)dy. \end{eqnarray*} where $J: \mathbb{R}^d \times \R^d \rightarrow \R$ is a symmetric measurable function. Let $q: \mathbb{R}^d \rightarrow \R.$ We specify assumptions on $a, q,$ and $J$ so that non-negative bounded solutions to $${\mathcal L}f + qf = 0$$ satisfy a Harnack inequality.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Springer Nature |
Keywords: | Conditional gauge, Gauge, Harnack inequality, Jump diffusion processes, Non-local operators, Carleson estimate, Boundary harnack principle, 3G Inequality |
ID Code: | 131647 |
Deposited On: | 07 Dec 2022 10:39 |
Last Modified: | 07 Dec 2022 10:39 |
Repository Staff Only: item control page