Athreya, K.B. ; Janicki, R. (2016) Asymptotics of powers of binomial and multinomial probabilities Statistics & Probability Letters, 112 . pp. 58-62. ISSN 01677152
Full text not available from this repository.
Official URL: http://doi.org/10.1016/j.spl.2015.12.012
Related URL: http://dx.doi.org/10.1016/j.spl.2015.12.012
Abstract
Fix positive integers k≥2, j≥2 and numbers p1,p2,…,pk such that 0<pi<1 for all i=1,2,…,k, and ∑i=1kpi=1. For a positive integer n, let bn,j,k(p1,p2,…,pk)≡∑(n1,n2,…,nk)∈Tn,k(n!n1!n2!⋯nk!p1n1p2n2⋯pknk)j, where Tn,k is the set {(n1,n2,…,nk):ni∈{0,1,2,…,n},∑i=1kni=n}. Then there exists 0<bj,k(p1,p2,…,pk)<∞ such that (1)n(j−1)(k−1)/2bn,j,k(p1,p2,…,pk)→bj,k(p1,p2,…,pk) as n→∞.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Elsevier B.V. |
Keywords: | Binomial, Multinomial, Asymptotics |
ID Code: | 131560 |
Deposited On: | 07 Dec 2022 06:00 |
Last Modified: | 07 Dec 2022 06:00 |
Repository Staff Only: item control page