Non-covalent bonds in group 1 and group 2 elements: the ‘alkalene bond’

Das, Arijit ; Arunan, E. (2022) Non-covalent bonds in group 1 and group 2 elements: the ‘alkalene bond’ Physical Chemistry Chemical Physics . ISSN 1463-9076

Full text not available from this repository.

Official URL: http://doi.org/10.1039/D2CP03904D

Related URL: http://dx.doi.org/10.1039/D2CP03904D

Abstract

The non-covalent bonds formed by group 1 and group 2 elements were systematically analysed by ab initio calculations at the MP2/aug-cc-pVDZ (for Ca, 6-311++G(2df,p) basis sets were used) level of theory to classify the weak bonds, followed by Atoms in Molecules (AIM) analysis of the ab initio wave functions. It has been established that there is a strong correlation between the electron density at the non-covalent bond critical point (BCP) and the binding energy for each homogeneous sample of complexes. The slopes of the electron density versus binding energy plot have been obtained for group 1 and group 2 donor molecules (Dn–X⋯A, for X = H, D = F/–OH/–SH, for X = Li, Na, D = F/Cl/Br and for X = Be, Mg, and Ca, D = F/Cl/H) with a set of acceptor molecules (A), which includes H2O, NH3, H2S, PH3, HCHO, C2H4, HCN, CO, CH3OH and CH3OCH3. The bonds formed by group 1 (except H-bonds) and group 2 belong to a high slope dominated by electrostatics, with several similarities, leading us to propose a common name, ‘alkalene bond’, for non-covalent bonding in alkali and alkaline earth metals.

Item Type:Article
Source:Copyright of this article belongs to The Royal Society of Chemistry
ID Code:130994
Deposited On:02 Dec 2022 05:33
Last Modified:02 Dec 2022 05:33

Repository Staff Only: item control page