Dynamics of vibrational frequency fluctuations in deuterated liquid ammonia: roles of fluctuating hydrogen bonds and free ND modes

Yadav, Vivek Kumar ; Chandra, Amalendu (2018) Dynamics of vibrational frequency fluctuations in deuterated liquid ammonia: roles of fluctuating hydrogen bonds and free ND modes Molecular Simulation, 44 (15). pp. 1210-1219. ISSN 0892-7022

Full text not available from this repository.

Official URL: http://doi.org/10.1080/08927022.2018.1475739

Related URL: http://dx.doi.org/10.1080/08927022.2018.1475739

Abstract

We present an ab initio molecular dynamics study of the roles of fluctuating hydrogen bonds and free ND modes in the dynamics of ND stretch frequency fluctuations in deuterated liquid ammonia. We have also looked at some of the other dynamical quantities such as diffusion and orientational relaxation and also structural quantities such as pair correlations and hydrogen bonding properties which are relevant in the current context. The time correlation function of ND stretch frequencies is found to decay with primarily two time scales: A short-time decay with a time scale of less than 100 fs arising from intermolecular motion of intact hydrogen bonds and also from fast hydrogen bond breaking and a longer time scale of about 500 fs which can be assigned to the lifetime of free ND modes. Unlike water, in liquid ammonia an ND mode is found to remain free for a longer period than it stays hydrogen bonded and this longer lifetime of free ND modes determines the long-time behaviour of frequency fluctuations. Our hole dynamics calculations produced results of vibrational spectral diffusion that are similar to the decay of frequency time correlation. Inclusion of dispersion corrections is found to make the dynamics slightly faster.

Item Type:Article
Source:Copyright of this article belongs to Informa UK Limited
Keywords:Liquid ammonia;ab initio molecular dynamics;vibrational spectral diffusion;hydrogen bonds
ID Code:130283
Deposited On:24 Nov 2022 05:06
Last Modified:24 Nov 2022 05:06

Repository Staff Only: item control page