Parametric experimental studies on mixing characteristics within a low area ratio rectangular supersonic gaseous ejector

Karthick, S. K. ; Rao, Srisha M. V. ; Jagadeesh, G. ; Reddy, K. P. J. (2016) Parametric experimental studies on mixing characteristics within a low area ratio rectangular supersonic gaseous ejector Physics of Fluids, 28 (7). 076101. ISSN 1070-6631

Full text not available from this repository.

Official URL: http://doi.org/10.1063/1.4954669

Related URL: http://dx.doi.org/10.1063/1.4954669

Abstract

We use the rectangular gaseous supersonic ejector as a platform to study the mixing characteristics of a confined supersonic jet. The entrainment ratio (ER) of the ejector, the non-mixed length (LNM), and potential core length (LPC) of the primary supersonic jet are measures to characterize mixing within the supersonic ejector. Experiments are carried out on a low area ratio rectangular supersonic ejector with air as the working fluid in both primary and secondary flows. The design Mach number of the nozzle (MPD = 1.5-3.0) and primary flow stagnation pressure (Pop = 4.89-9.89 bars) are the parameters that are varied during experimentation. Wall static pressure measurements are carried out to understand the performance of the ejector as well as to estimate the LNM (the spatial resolution is limited by the placement of pressure transducers). Well-resolved flow images (with a spatial resolution of 50 μm/pixel and temporal resolution of 1.25 ms) obtained through Planar Laser Mie Scattering (PLMS) show the flow dynamics within the ejector with clarity. The primary flow and secondary flow are seeded separately with acetone that makes the LNM and LPC clearly visible in the flow images. These parameters are extracted from the flow images using in-house image processing routines. A significant development in this work is the definition of new scaling parameters within the ejector. LNM, non-dimensionalized with respect to the fully expanded jet height hJ, is found to be a linear function of the Mach number ratio (Mach number ratio is defined as the ratio of design Mach number (MPD) and fully expanded Mach number (MPJ) of the primary jet). This definition also provides a clear demarcation of under-expanded and over-expanded regimes of operation according to [MPD/MPJ] > 1 and [MPD/MPJ] < 1, respectively. It is observed that the ER increased in over-expanded mode (to 120%) and decreased in under-expanded mode (to 68%). Similarly, LNM decreased (to 21.8%) in over-expanded mode and increased (to 20.4%) in under-expanded mode. Lengthening of LPC by 139% and a reduction of 50% in shock cell spacing have also been observed for specific flow conditions. The details regarding experimentation, analysis, and discussions are described in this article.

Item Type:Article
Source:Copyright of this article belongs to ResearchGate GmbH.
ID Code:127428
Deposited On:17 Oct 2022 04:59
Last Modified:11 Nov 2022 04:35

Repository Staff Only: item control page