Das, Rajdeep ; Mitra, Amrita ; Mitra, Gopa ; Maity, Dibyajyoti ; Bhat, Vijay ; Pal, Debnath ; Ross, Cecil ; Kurpad, Anura V. ; Mandal, Amit Kumar (2018) Molecular insights of inhibition in sickle hemoglobin polymerization upon glutathionylation: hydrogen/deuterium exchange mass spectrometry and molecular dynamics simulation-based approach Biochemical Journal, 475 (13). pp. 2153-2166. ISSN 0264-6021
Full text not available from this repository.
Official URL: http://doi.org/10.1042/BCJ20180306
Related URL: http://dx.doi.org/10.1042/BCJ20180306
Abstract
In sickle cell anemia, polymerization of hemoglobin in its deoxy state leads to the formation of insoluble fibers that result in sickling of red blood cells. Stereo-specific binding of isopropyl group of βVal6, the mutated amino-acid residue of a tetrameric sickle hemoglobin molecule (HbS), with hydrophobic groove of another HbS tetramer initiates the polymerization. Glutathionylation of βCys93 in HbS was reported to inhibit the polymerization. However, the mechanism of inhibition in polymerization is unknown to date. In our study, the molecular insights of inhibition in polymerization were investigated by monitoring the conformational dynamics in solution phase using hydrogen/deuterium exchange-based mass spectrometry. The conformational rigidity imparted due to glutathionylation of HbS results in solvent shielding of βVal6 and perturbation in the conformation of hydrophobic groove of HbS. Additionally, molecular dynamics simulation trajectory showed that the stereo-specific localization of glutathione moiety in the hydrophobic groove across the globin subunit interface of tetrameric HbS might contribute to inhibition in polymerization. These conformational insights in the inhibition of HbS polymerization upon glutathionylation might be translated in the molecularly targeted therapeutic approaches for sickle cell anemia.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Portland Press Limited |
Keywords: | glutathionyl hemoglobin; hydrogen/deuterium exchange mass spectrometry; molecular dynamics simulation; oxygen equilibrium curve; sickle cell anemia. |
ID Code: | 126264 |
Deposited On: | 13 Oct 2022 05:45 |
Last Modified: | 13 Oct 2022 05:45 |
Repository Staff Only: item control page