Cenko, S. B. ; Frail, D. A. ; Harrison, F. A. ; Kulkarni, S. R. ; Nakar, E. ; Chandra, P. C. ; Butler, N. R. ; Fox, D. B. ; Gal-Yam, A. ; Kasliwal, M. M. ; Kelemen, J. ; Moon, D.-S. ; Ofek, E. O. ; Price, P. A. ; Rau, A. ; Soderberg, A. M. ; Teplitz, H. I. ; Werner, M. W. ; Bock, D. C.-J. ; Bloom, J. S. ; Starr, D. A. ; Filippenko, A. V. ; Chevalier, R. A. ; Gehrels, N. ; Nousek, J. N. ; Piran, T. (2010) THE COLLIMATION AND ENERGETICS OF THE BRIGHTESTSWIFTGAMMA-RAY BURSTS The Astrophysical Journal, 711 (2). pp. 641-654. ISSN 0004-637X
Full text not available from this repository.
Official URL: http://doi.org/10.1088/0004-637X/711/2/641
Related URL: http://dx.doi.org/10.1088/0004-637X/711/2/641
Abstract
Long-duration gamma-ray bursts (GRBs) are widely believed to be highly collimated explosions (bipolar conical outflows with half-opening angle θ≈ 1°–10°). As a result of this beaming factor, the true energy release from a GRB is usually several orders of magnitude smaller than the observed isotropic value. Measuring this opening angle, typically inferred from an achromatic steepening in the afterglow light curve (a "jet" break), has proven exceedingly difficult in the Swift era. Here, we undertake a study of five of the brightest (in terms of the isotropic prompt γ-ray energy release, Eγ,iso) GRBs in the Swift era to search for jet breaks and hence constrain the collimation-corrected energy release. We present multi-wavelength (radio through X-ray) observations of GRBs 050820A, 060418, and 080319B, and construct afterglow models to extract the opening angle and beaming-corrected energy release for all three events. Together with results from previous analyses of GRBs 050904 and 070125, we find evidence for an achromatic jet break in all five events, strongly supporting the canonical picture of GRBs as collimated explosions. The most natural explanation for the lack of observed jet breaks from most Swift GRBs is therefore selection effects. However, the opening angles for the events in our sample are larger than would be expected if all GRBs had a canonical energy release of ∼1051 erg. The total energy release we measure for the "hyper-energetic" (Etot ≳ 1052 erg) events in our sample is large enough to start challenging models with a magnetar as the compact central remnant.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to IOP Publishing |
Keywords: | gamma-ray burst: general; X-rays: individual: GRB 050820A GRB 050904 GRB 060418 GRB 070125 GRB 080319B; Astrophysics - High Energy Astrophysical Phenomena |
ID Code: | 125878 |
Deposited On: | 17 Oct 2022 08:58 |
Last Modified: | 17 Oct 2022 08:58 |
Repository Staff Only: item control page