Local decoherence-resistant quantum states of large systems

Mishra, Utkarsh ; Sen(De), Aditi ; Sen, Ujjwal (2015) Local decoherence-resistant quantum states of large systems Physics Letters A, 379 (4). pp. 261-271. ISSN 0031-899X (print); 1536-6065 (web)

[img] PDF
724kB

Official URL: https://doi.org/10.1016%2Fj.physleta.2014.11.037

Abstract

We identify a class of quantum states, each consisting of a microscopic and a macroscopic section, that are effectively decoherence-free when each particle is locally passed through a quantum channel. In particular, and in contrast to other macroscopic quantum states like the Greenberger-Horne-Zeilinger state, the content of entanglement and other quantum correlations in the microscopic to macroscopic partition of this class of states is independent of the number of particles in their macroscopic sectors, when all the particles suffer passage through local amplitude and phase damping channels. Decay of quantum correlations -- entanglement as well as quantum discord -- of this class of states in the microscopic to macroscopic partition is also much lower in the case of all the local quantum channels, as compared to the other macroscopic superposition states. The macroscopic sections of the states are formed, in each case, by using a Dicke state and an orthogonal product state, which are macroscopically distinct in terms of markedly different amounts of violation of Bell inequality.

Item Type:Article
ID Code:125815
Deposited On:12 Oct 2022 10:41
Last Modified:12 Oct 2022 10:41

Repository Staff Only: item control page