Possible Climatic Implications Of High Altitude Emissions Of Black Carbon

Govardhan, Gaurav ; Satheesh, Sreedharan Krishnakumari ; Nanjundiah, Ravi ; Moorthy, Krishnaswamy Krishna ; Babu, Surendran Suresh (2017) Possible Climatic Implications Of High Altitude Emissions Of Black Carbon Atmospheric Chemistry and Physics . ISSN 1680-7324

Full text not available from this repository.

Official URL: http://doi.org/10.5194/acp-2017-96

Related URL: http://dx.doi.org/10.5194/acp-2017-96

Abstract

On account of its strong absorption of solar and terrestrial radiations, Black Carbon (BC) aerosol is known to impact large scale systems such as the Asian monsoon, Himalayan glaciers etc, besides affecting the thermal structure of lower atmosphere. While most studies focus on the near-surface abundance and impacts of BC, our study, using online regional chemistry transport model (WRF-Chem) simulations, examines the implications of sharp and confined layers of high BC concentration (called elevated BC layers) at altitudes of about 4.5 km and 8 km over the Indian region, as revealed in the recent in-situ measurements using high-altitude balloons. Our study demonstrates, that emissions from high-flying aircrafts are the most likely cause of these elevated BC layers. Furthermore, we show that such aircraft-emitted BC can get transported to even upper tropospheric/lower stratospheric heights (~ 17 km) aided by the strong monsoonal convection occurring over the region, which are known to overshoot the tropical tropopause leading to injection of tropospheric air mass (along with its constituent aerosols) into the stratosphere. We show observational evidence for such an intrusion of tropospheric BC into the stratosphere over Indian region, using extinction coefficient and particle depolarization ratio data from CALIOP Lidar on-board the CALIPSO satellite. We hypothesise that such intrusions of BC to lower stratosphere and its consequent longer residence time in the stratosphere would have significant implications for stratospheric ozone, considering the already reported ozone depleting potential of BC.

Item Type:Article
Source:Copyright of this article belongs to European Geosciences Union.
ID Code:125176
Deposited On:31 Dec 2021 10:21
Last Modified:31 Dec 2021 10:21

Repository Staff Only: item control page