Kohn-Sham density functional theory of Abelian anyons

Hu, Yayun ; Murthy, G. ; Rao, Sumathi ; Jain, J. K. (2021) Kohn-Sham density functional theory of Abelian anyons Physical Review B: Condensed Matter and Materials Physics, 103 (3). ISSN 2469-9950

Full text not available from this repository.

Official URL: http://doi.org/10.1103/PhysRevB.103.035124

Related URL: http://dx.doi.org/10.1103/PhysRevB.103.035124

Abstract

We develop a density functional treatment of non-interacting abelian anyons, which is capable, in principle, of dealing with a system of a large number of anyons in an external potential. Comparison with exact results for few particles shows that the model captures the behavior qualitatively and semi-quantitatively, especially in the vicinity of the fermionic statistics. We then study anyons with statistics parameter 1+1/n, which are thought to condense into a superconducting state. An indication of the superconducting behavior is the mean-field result that, for uniform density systems, the ground state energy increases under the application of an external magnetic field independent of its direction. Our density-functional-theory based analysis does not find that to be the case for finite systems of anyons, which can accommodate a weak external magnetic field through density transfer between the bulk and the boundary rather than through transitions across effective Landau levels, but the "Meissner repulsion" of the external magnetic field is recovered in the thermodynamic limit as the effect of the boundary becomes negligible. We also consider the quantum Hall effect of anyons, and show that its topological properties, such as the charge and statistics of the excitations and the quantized Hall conductance, arise in a self-consistent fashion.

Item Type:Article
Source:Copyright of this article belongs to American Physical Society.
ID Code:124241
Deposited On:10 Nov 2021 06:34
Last Modified:10 Nov 2021 06:34

Repository Staff Only: item control page