Naik, Mit H. ; Maity, Indrajit ; Maiti, Prabal K. ; Jain, Manish (2019) Kolmogorov–Crespi Potential For Multilayer Transition-Metal Dichalcogenides: Capturing Structural Transformations in Moiré Superlattices Journal of Physical Chemistry C, 123 (15). pp. 9770-9778. ISSN 1932-7447
Full text not available from this repository.
Official URL: http://doi.org/10.1021/acs.jpcc.8b10392
Related URL: http://dx.doi.org/10.1021/acs.jpcc.8b10392
Abstract
We develop parameters for the interlayer Kolmogorov–Crespi (KC) potential to study structural features of four transition-metal dichalcogenides (TMDs): MoS2, WS2, MoSe2, and WSe2. We also propose a mixing rule to extend the parameters to their heterostructures. Moiré superlattices of twisted bilayer TMDs have been recently shown to host shear solitons, topological point defects, and ultraflat bands close to the valence band edge. Performing structural relaxations at the density functional theory (DFT) level is a major bottleneck in the study of these systems. We show that the parametrized KC potential can be used to obtain atomic relaxations in good agreement with DFT relaxations. Furthermore, the moiré superlattices relaxed using DFT and the proposed force field yield very similar electronic band structures.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to American Chemical Society. |
ID Code: | 123965 |
Deposited On: | 26 Oct 2021 06:37 |
Last Modified: | 26 Oct 2021 06:37 |
Repository Staff Only: item control page