Christofferson, Rebecca C. ; Ramasamy, Viswanathan ; Arora, Upasana ; Shukla, Rahul ; Poddar, Ankur ; Shanmugam, Rajgokul K. ; White, Laura J. ; Mattocks, Melissa M. ; Raut, Rajendra ; Perween, Ashiya ; Tyagi, Poornima ; de Silva, Aravinda M. ; Bhaumik, Siddhartha K. ; Kaja, Murali Krishna ; Villinger, François ; Ahmed, Rafi ; Johnston, Robert E. ; Swaminathan, Sathyamangalam ; Khanna, Navin (2018) A tetravalent virus-like particle vaccine designed to display domain III of dengue envelope proteins induces multi-serotype neutralizing antibodies in mice and macaques which confer protection against antibody dependent enhancement in AG129 mice PLoS Neglected Tropical Diseases, 12 (1). e0006191. ISSN 1935-2735
Full text not available from this repository.
Official URL: http://doi.org/10.1371/journal.pntd.0006191
Related URL: http://dx.doi.org/10.1371/journal.pntd.0006191
Abstract
Background Dengue is one of the fastest spreading vector-borne diseases, caused by four antigenically distinct dengue viruses (DENVs). Antibodies against DENVs are responsible for both protection as well as pathogenesis. A vaccine that is safe for and efficacious in all people irrespective of their age and domicile is still an unmet need. It is becoming increasingly apparent that vaccine design must eliminate epitopes implicated in the induction of infection-enhancing antibodies. Methodology/principal findings We report a Pichia pastoris-expressed dengue immunogen, DSV4, based on DENV envelope protein domain III (EDIII), which contains well-characterized serotype-specific and cross-reactive epitopes. In natural infection, < 10% of the total neutralizing antibody response is EDIII-directed. Yet, this is a functionally relevant domain which interacts with the host cell surface receptor. DSV4 was designed by in-frame fusion of EDIII of all four DENV serotypes and hepatitis B surface (S) antigen and co-expressed with unfused S antigen to form mosaic virus-like particles (VLPs). These VLPs displayed EDIIIs of all four DENV serotypes based on probing with a battery of serotype-specific anti-EDIII monoclonal antibodies. The DSV4 VLPs were highly immunogenic, inducing potent and durable neutralizing antibodies against all four DENV serotypes encompassing multiple genotypes, in mice and macaques. DSV4-induced murine antibodies suppressed viremia in AG129 mice and conferred protection against lethal DENV-4 virus challenge. Further, neither murine nor macaque anti-DSV4 antibodies promoted mortality or inflammatory cytokine production when passively transferred and tested in an in vivo dengue disease enhancement model of AG129 mice. Conclusions/significance Directing the immune response to a non-immunodominant but functionally relevant serotype-specific dengue epitope of the four DENV serotypes, displayed on a VLP platform, can help minimize the risk of inducing disease-enhancing antibodies while eliciting effective tetravalent seroconversion. DSV4 has a significant potential to emerge as a safe, efficacious and inexpensive subunit dengue vaccine candidate. Author summary Dengue is mosquito-borne viral disease which is currently a global public health problem. It is caused by four different types of dengue viruses. Nearly a 100 million people a year suffer from overt sickness, which may range from mild fever to potentially fatal disease. A virus-based dengue vaccine was launched for the first time in late 2015. Unexpectedly, this vaccine mimics the dengue viruses in that it appears to elicit disease-enhancing antibodies. To reduce such risk, safer vaccines that eliminate viral proteins responsible for undesirable antibodies are needed. We focused our attention on a small domain of the dengue virus surface protein known as envelope domain III (EDIII). Humans make only a small amount of antibodies against EDIII, but these antibodies are effective in blocking dengue virus from entering cells. We used a yeast expression system to display EDIIIs of all four types of dengue viruses on the surface of non-infectious virus-like particles (VLPs). These VLPs elicited antibodies, in mice and monkeys, which blocked all four dengue virus types and their variants from entering cells in culture. Importantly, these antibodies did not enhance dengue infection in a mouse model.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Public Library of Science. |
ID Code: | 123865 |
Deposited On: | 19 Oct 2021 06:43 |
Last Modified: | 19 Oct 2021 06:43 |
Repository Staff Only: item control page