Chalcogen stabilized trimetallic clusters: synthesis, structures, and bonding of [(Cp*M)3(E)6+m(BH)n] (M = Nb or Ta; E = S or Se; m = 0 or 1 or 2; n = 0 or 1)

Kar, Sourav ; Bairagi, Subhash ; Saha, Koushik ; Raghavendra, Beesam ; Ghosh, Sundargopal (2019) Chalcogen stabilized trimetallic clusters: synthesis, structures, and bonding of [(Cp*M)3(E)6+m(BH)n] (M = Nb or Ta; E = S or Se; m = 0 or 1 or 2; n = 0 or 1) Dalton Transactions, 48 (13). pp. 4203-4210. ISSN 1477-9226

Full text not available from this repository.

Official URL: http://doi.org/10.1039/C8DT05061A

Related URL: http://dx.doi.org/10.1039/C8DT05061A

Abstract

In an effort to isolate the chalcogen-rich niobium analogue of [(Cp*Ta)3(μ-S)3(μ3-S)3BH], the room temperature reaction of [Cp*NbCl4] (Cp* = η5-C5Me5) with Li[BH2S3] was carried out. Although the objective of isolating the niobium analogue was not achieved, the reaction yielded a homocubane-type cluster [(Cp*Nb)3(μ-S)3(μ3-S)3(μ-S)BH], 1, and a hexa-sulfido cluster [(Cp*Nb)3(μ-S)6], 2. Cluster 1 is a notable example of a homocubane-type cluster in which one of the vertices of the homocubane is missing. Compound 1 may be considered as a hypo-electronic cluster with an electron count of 64 cve (cve = cluster valence electrons), whereas compound 2 shows the presence of two doubly bridging η1-S around each Nb–Nb bond. On the other hand, the room temperature reaction of [Cp*TaCl4] with selenaborate ligand, [LiBH2Se3], led to the formation of [(Cp*Ta)3(μ-Se)4{μ-Se2(Se2)}], 3. Compound 3 is one of the rarest examples having a Ta3Se6 core structure with a unique diselenide bridging fragment. The presence of a short Se–Se bond of this diselenide unit makes this molecule of further interest. All these compounds were characterized by 1H, 11B{1H} and 13C{1H} NMR spectroscopy, infrared spectroscopy, mass spectrometry, and single-crystal X-ray crystallography. Density functional theory (DFT) calculations were carried out to provide insight into the bonding and electronic structures of these chalcogen-rich trimetallic clusters.

Item Type:Article
Source:Copyright of this article belongs to Royal Society of Chemistry.
ID Code:123793
Deposited On:18 Oct 2021 05:55
Last Modified:18 Oct 2021 05:55

Repository Staff Only: item control page