GHOSH, ANISH ; SØLUND KIRSEBOM, MAXIM ; ROY, PARTHANIL (2021) Continued fractions, the Chen–Stein method and extreme value theory Ergodic Theory & Dynamical Systems, 41 (2). pp. 461-470. ISSN 0143-3857
Full text not available from this repository.
Official URL: http://doi.org/10.1017/etds.2019.64
Related URL: http://dx.doi.org/10.1017/etds.2019.64
Abstract
In this work we deal with extreme value theory in the context of continued fractions using techniques from probability theory, ergodic theory and real analysis. We give an upper bound for the rate of convergence in the Doeblin–Iosifescu asymptotics for the exceedances of digits obtained from the regular continued fraction expansion of a number chosen randomly from according to the Gauss measure. As a consequence, we significantly improve the best known upper bound on the rate of convergence of the maxima in this case. We observe that the asymptotics of order statistics and the extremal point process can also be investigated using our methods.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Cambridge University Press. |
ID Code: | 123688 |
Deposited On: | 11 Oct 2021 11:04 |
Last Modified: | 11 Oct 2021 11:04 |
Repository Staff Only: item control page