Dumir, V. C. ; Hans-Gill, R. J. (1977) On a conjecture of Mahler Bulletin of the Australian Mathematical Society, 16 (01). pp. 125-129. ISSN 1755-1633
|
PDF
- Publisher Version
131kB |
Official URL: http://journals.cambridge.org/action/displayAbstra...
Related URL: http://dx.doi.org/10.1017/S0004972700023078
Abstract
Let R be the field of real numbers. For a in R, let ||α|| be the distance of a from the nearest integer. The following conjecture of Kurt Mahler [Bull. Austral. Math. Soc. 14 (1976), 463-465] is proved. Let m, n be two positive integers n ≥ 2m. Let S be a finite or infinite set of positive integers with the following properties: (Q1) S contains the integers m, m+1, …, n-m; (Q2) every element of S satisfies ||θ/n|| ≥ m/n then sup inf||εα|| m/n. αεR eεS.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Australian Mathematical Society. |
ID Code: | 12360 |
Deposited On: | 10 Nov 2010 06:23 |
Last Modified: | 16 May 2016 21:43 |
Repository Staff Only: item control page