Bambah, R. P. ; Dumir, V. C. ; Hans-Gill, R. J. (1983) On a conjecture of jackson on non-homogeneous quadratic forms Journal of Number Theory, 16 (3). pp. 403-419. ISSN 0022-314X
Full text not available from this repository.
Official URL: http://linkinghub.elsevier.com/retrieve/pii/002231...
Related URL: http://dx.doi.org/10.1016/0022-314X(83)90067-7
Abstract
Here we prove the following modification of a conjecture of Jackson (J. London Math. Soc. (2) 3 (1971), 47-58) for indefinite quadratic forms of signature 0, ± 1 or ±2. Let Q(x1,…, xn) be a real indefinite quadratic form of determinant D ≠ 0. Let ||α||≤ ||D||1/n. For any real numbers a1,…, an, there exist (x1,…, xn) = (a1,…, an) (mod 1) such that |Q(x1.....xn) - α|≤|D|1/n. In particular, the proof shows that we can find (x1,…, xn) = (a1,…, an) (mod 1) such that 0 < Q(x1 . . . . .xn) ≤ 2|D|1/n. For forms of signature zero this result is also the best possible.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Elsevier Science. |
ID Code: | 12349 |
Deposited On: | 10 Nov 2010 06:25 |
Last Modified: | 13 May 2011 04:14 |
Repository Staff Only: item control page