Kayal, Neeraj ; Saxena, Nitin (2006) Complexity of Ring Morphism Problems Computational Complexity, 15 . pp. 342-390. ISSN 1016-3328
Full text not available from this repository.
Official URL: https://www.microsoft.com/en-us/research/publicati...
Abstract
We study the complexity of the isomorphism and automorphism problems for finite rings with unity. We show that both integer factorization and graph isomorphism reduce to the problem of counting automorphisms of rings. The problem is shown to be in the complexity class \AMco\AM and hence is not \NP-complete unless the polynomial hierarchy collapses. Integer factorization also reduces to the problem of finding nontrivial automorphism of a ring and to the problem of finding isomorphism between two rings. We also show that deciding whether a given ring has a non-trivial automorphism can be done in deterministic polynomial time.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Springer Nature Switzerland AG. |
ID Code: | 122754 |
Deposited On: | 12 Aug 2021 13:22 |
Last Modified: | 12 Aug 2021 13:22 |
Repository Staff Only: item control page