Sridharan, Kishore ; Sreekanth, P. ; Park, Tae Joo ; Philip, Reji (2015) Nonlinear Optical Investigations in Nine-Atom Silver Quantum Clusters and Graphitic Carbon Nitride Nanosheets Journal of Physical Chemistry C, 119 (28). pp. 16314-16320. ISSN 1932-7447
Full text not available from this repository.
Official URL: http://doi.org/10.1021/acs.jpcc.5b02372
Related URL: http://dx.doi.org/10.1021/acs.jpcc.5b02372
Abstract
Absorption saturation due to surface plasmon resonance affects the optical limiting efficiency of metal nanoparticles (NPs) by raising the limiting threshold to higher laser fluences. It has been shown that in gold, compared to the larger NPs, smaller quantum clusters (QCs) exhibit better optical limiting with lower limiting thresholds due to the absence of absorption saturation. Here we report optical limiting properties of two novel materials, namely, nine-atom silver (Ag9) QCs and graphitic carbon nitride (GCN) nanosheets. The relatively large nonlinear absorption of Ag9 QCs compared to Ag NPs is revealed from open-aperture Z-scan measurements carried out using 532 nm, 5 ns laser pulses. Optical nonlinearity in the QCs arises mostly from free carrier absorption and a relatively weak saturable absorption. The superior limiting efficiency of Ag9 QCs is complemented by excellent chemical stability, which makes silver quantum clusters ideal candidates for optical limiting applications. The two-dimensional sheet-like structure of GCN is ideal for grafting metals and semiconductors, and we show that even though the nonlinearity of pristine GCN is low it can be improved substantially by grafting lightly with Ag9 QCs.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to American Chemical Society. |
ID Code: | 121073 |
Deposited On: | 09 Jul 2021 05:23 |
Last Modified: | 09 Jul 2021 05:23 |
Repository Staff Only: item control page