Building-up Remarkably Stable Magnesium Porphyrin Polymers Self-Assembled via Bidentate Axial Ligands: Synthesis, Structure, Surface Morphology, and Effect of Bridging Ligands

Ikbal, Sk Asif ; Brahma, Sanfaori ; Rath, Sankar Prasad (2012) Building-up Remarkably Stable Magnesium Porphyrin Polymers Self-Assembled via Bidentate Axial Ligands: Synthesis, Structure, Surface Morphology, and Effect of Bridging Ligands Inorganic Chemistry, 51 (18). pp. 9666-9676. ISSN 0020-1669

Full text not available from this repository.

Official URL: http://doi.org/10.1021/ic300826p

Related URL: http://dx.doi.org/10.1021/ic300826p

Abstract

A series of supramolecular architectures of magnesium tetranitrooctaethylporphyrins mediated by several bidentate axial ligands have been synthesized in excellent yields and structurally characterized. Six conjugated axial ligand with increasing chain lengths have been utilized in the present investigations in which the Mg···Mg nonbonding distance between successive ions also increases from 0.73 to 2.70 nm in the series. To the best of our knowledge, this is the first report where stable metallo-porphyrin polymers with such long spacers have been synthesized in one pot so easily. Linear one-dimensional (1D) polymeric chains were observed in the X-ray structure of the six-coordinated complexes in which porphyrin units are aligned parallel to each other to have so-called “shish kebab” like architectures to maintain offset-stacked overlap. However, after an optimum Mg···Mg nonbonding distance, these 1D chain do not continue, rather they form five-coordinated porphyrin dimers with “wheel-and-axle” like architectures which are then self-aggregated by π–π interactions in a perpendicular manner to fill space created by large bridging ligands more effectively which consequently results in spherical structures. The structures of the molecules in solution and their surface patterns on highly ordered pyrolytic graphite (HOPG) have also been investigated.

Item Type:Article
Source:Copyright of this article belongs to American Chemical Society.
ID Code:120909
Deposited On:07 Jul 2021 06:08
Last Modified:07 Jul 2021 06:08

Repository Staff Only: item control page