Vinylogy in Orthoester Hydrolysis: Total Syntheses of Cyclophellitol, Valienamine, Gabosine K, Valienone, Gabosine G, 1-epi-Streptol, Streptol, and Uvamalol A

Mondal, Soumik ; Prathap, Annamalai ; Sureshan, Kana M. (2013) Vinylogy in Orthoester Hydrolysis: Total Syntheses of Cyclophellitol, Valienamine, Gabosine K, Valienone, Gabosine G, 1-epi-Streptol, Streptol, and Uvamalol A Journal of Organic Chemistry, 78 (15). pp. 7690-7700. ISSN 0022-3263

Full text not available from this repository.

Official URL: http://doi.org/10.1021/jo401272j

Related URL: http://dx.doi.org/10.1021/jo401272j

Abstract

C7-cyclitols represent an important category of natural products possessing a broad spectrum of biological activities. As each member of these compounds is structurally unique, the usual practice is to synthesize them individually from appropriate polyhydroxylated chiral pools. We have observed an unusual vinylogy in acid mediated hydrolysis of enol ethers of myo-inositol 1,3,5-orthoesters giving a synthetically versatile polyhydroxylated cyclohexenal intermediate. We have exploited this unprecedented reaction for developing a general strategy for the rapid and efficient syntheses of several structurally diverse natural products of C7-cyclitol family. We have made an appropriately protected advanced intermediate 25 in five steps from the cheap and commercially available myo-inositol, and this common intermediate has been used to synthesize eight natural products in racemic form. We could synthesize (±)-cyclophellitol in seven steps, (±)-valienamine in five steps, (±)-gabosine I in five steps, (±)-gabosine G in six steps, (±)-gabosine K in three steps, (±)-streptol in six steps, (±)-1-epi-streptol in two steps, and (±)-uvamalol A in five steps from this intermediate. Supporting Information

Item Type:Article
Source:Copyright of this article belongs to American Chemical Society.
ID Code:119885
Deposited On:18 Jun 2021 06:08
Last Modified:18 Jun 2021 06:08

Repository Staff Only: item control page