Mittal, Anshul ; Dahiya, Kunal ; Agrawal, Sheshansh ; Saini, Deepak ; Agarwal, Sumeet ; Kar, Purushottam ; Varma, Manik (2021) DECAF: Deep Extreme Classification with Label Features In: WSDM '21: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, March 2021, Phoenix , AZ , USA.
Full text not available from this repository.
Official URL: http://doi.org/10.1145/3437963.3441807
Related URL: http://dx.doi.org/10.1145/3437963.3441807
Abstract
Extreme multi-label classification (XML) involves tagging a data point with its most relevant subset of labels from an extremely large label set, with several applications such as product-to-product recommendation with millions of products. Although leading XML algorithms scale to millions of labels, they largely ignore label metadata such as textual descriptions of the labels. On the other hand, classical techniques that can utilize label metadata via representation learning using deep networks struggle in extreme settings. This paper develops the DECAF algorithm that addresses these challenges by learning models enriched by label metadata that jointly learn model parameters and feature representations using deep networks and offer accurate classification at the scale of millions of labels. DECAF makes specific contributions to model architecture design, initialization, and training, enabling it to offer up to 2-6% more accurate prediction than leading extreme classifiers on publicly available benchmark product-to-product recommendation datasets, such as LF-AmazonTitles-1.3M. At the same time, DECAF was found to be up to 22x faster at inference than leading deep extreme classifiers, which makes it suitable for real-time applications that require predictions within a few milliseconds.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Source: | Copyright of this article belongs to Association for Computing Machinery. |
ID Code: | 119527 |
Deposited On: | 14 Jun 2021 07:02 |
Last Modified: | 14 Jun 2021 07:02 |
Repository Staff Only: item control page