Bhattacharya, Shashwat ; Sadhukhan, Shubhadeep ; Guha, Anirban ; Verma, Mahendra K. (2019) Similarities between the structure functions of thermal convection and hydrodynamic turbulence Physics of Fluids, 31 (11). p. 115107. ISSN 1070-6631
Full text not available from this repository.
Official URL: http://doi.org/10.1063/1.5119905
Related URL: http://dx.doi.org/10.1063/1.5119905
Abstract
In this paper, we analyze the scaling of velocity structure functions of turbulent thermal convection. Using high-resolution numerical simulations, we show that the structure functions scale similar to those of hydrodynamic turbulence, with the scaling exponents in agreement with the predictions of She and Leveque [“Universal scaling laws in fully developed turbulence,” Phys. Rev. Lett. 72, 336–339 (1994)]. The probability distribution functions of velocity increments are non-Gaussian with wide tails in the dissipative scales and become close to Gaussian in the inertial range. The tails of the probability distribution follow a stretched exponential. We also show that in thermal convection, the energy flux in the inertial range is less than the viscous dissipation rate. This is unlike in hydrodynamic turbulence where the energy flux and the dissipation rate are equal.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to American Institute of Physics. |
ID Code: | 118897 |
Deposited On: | 03 Jun 2021 15:35 |
Last Modified: | 03 Jun 2021 15:35 |
Repository Staff Only: item control page