On special values of certain Dirichlet L-functions

Gun, Sanoli ; Ramakrishnan, B. (2008) On special values of certain Dirichlet L-functions The Ramanujan Journal, 15 (2). pp. 275-280. ISSN 1382-4090

Full text not available from this repository.

Official URL: http://doi.org/10.1007/s11139-007-9077-x

Related URL: http://dx.doi.org/10.1007/s11139-007-9077-x

Abstract

Let r k (n) denote the number of ways n can be expressed as a sum of k squares. Recently, S. Cooper (Ramanujan J. 6:469–490, [2002]), conjectured a formula for r 9(t), t≡5 (mod 8), r 11(t), t≡7 (mod 8), where t is a square-free positive integer. In this note we observe that these conjectures follow from the works of Lomadze (Akad. Nauk Gruz. Tr. Tbil. Mat. Inst. Razmadze 17:281–314, [1949]; Acta Arith. 68(3):245–253, [1994]). Further we express r 9(t), r 11(t) in terms of certain special values of Dirichlet L-functions. Combining these two results we get expressions for these special values of Dirichlet L-functions involving Jacobi symbols.

Item Type:Article
Source:Copyright of this article belongs to Springer Nature.
Keywords:Dirichlet L-Functions; Sums Of Squares.
ID Code:118027
Deposited On:11 May 2021 07:16
Last Modified:11 May 2021 07:16

Repository Staff Only: item control page