Gun, Sanoli ; Paul, Biplab ; Sengupta, Jyoti (2018) On Hecke eigenvalues of Siegel modular forms in the Maass space Forum Mathematicum, 30 (3). pp. 775-783. ISSN 0933-7741
Full text not available from this repository.
Official URL: https://doi.org/10.1515/forum-2017-0092
Related URL: http://dx.doi.org/10.1515/forum-2017-0092
Abstract
In this article, we prove an Omega result for the Hecke eigenvalues λF(n){\lambda_{F}(n)} of Maass forms F which are Hecke eigenforms in the space of Siegel modular forms of weight k , genus two for the Siegel modular group Sp2(ℤ){Sp_{2}({\mathbb{Z}})}. In particular, we prove λF(n)=Ω(nk-1exp(clognloglogn)),\lambda_{F}(n)=\Omega\biggl{(}n^{k-1}\exp\biggl{(}c\frac{\sqrt{\log n}}{\log% \log n}\biggr{)}\biggr{)}, when c>0{c>0} is an absolute constant. This improves the earlier result λF(n)=Ω(nk-1(lognloglogn))\lambda_{F}(n)=\Omega\biggl{(}n^{k-1}\biggl{(}\frac{\sqrt{\log n}}{\log\log n}% \biggr{)}\biggr{)} of Das and the third author. We also show that for any n≥3{n\geq 3}, one has λF(n)≤nk-1exp(c1lognloglogn),\lambda_{F}(n)\leq n^{k-1}\exp\biggl{(}c_{1}\sqrt{\frac{\log n}{\log\log n}}% \biggr{)}, where c1>0{c_{1}>0} is an absolute constant. This improves an earlier result of Pitale and Schmidt. Further, we investigate the limit points of the sequence {λF(n)/nk-1}n∈ℕ{\{\lambda_{F}(n)/n^{k-1}\}_{n\in{\mathbb{N}}}} and show that it has infinitely many limit points. Finally, we show that λF(n)>0{\lambda_{F}(n)>0} for all n , a result proved earlier by Breulmann by a different technique.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Walter de Gruyter GmbH. |
ID Code: | 118005 |
Deposited On: | 11 May 2021 05:26 |
Last Modified: | 11 May 2021 05:26 |
Repository Staff Only: item control page