Datta, K. K. ; Choudhury, T. R. ; Bharadwaj, S. (2007) The multifrequency angular power spectrum of the epoch of reionization 21-cm signal Monthly Notices of the Royal Astronomical Society, 378 (1). pp. 119-128. ISSN 0035-8711
Full text not available from this repository.
Official URL: http://doi.org/10.1111/j.1365-2966.2007.11747.x
Related URL: http://dx.doi.org/10.1111/j.1365-2966.2007.11747.x
Abstract
Observations of redshifted 21-cm radiation from neutral hydrogen (H i) at high redshifts is an important future probe of reionization. We consider the multifrequency angular power spectrum (MAPS) to quantify the statistics of the H i signal as a joint function of the angular multipole l and frequency separation Δν. The signal at two different frequencies is expected to decorrelate as Δν is increased, and quantifying this is particularly important in deciding the frequency resolution for future H i observations. This is also expected to play a very crucial role in extracting the signal from foregrounds as the signal is expected to decorrelate much faster than the foregrounds (which are largely continuum sources) with increasing Δν.In this paper, we develop formulae relating MAPS to different components of the 3D H i power spectrum taking into account H i peculiar velocities. We show that the flat-sky approximation provides a very good representation over the angular scales of interest, and a final expression which is very simple to calculate and interpret. We present results for z= 10 assuming a neutral hydrogen fraction of 0.6 considering two models for the H i distribution, namely, (i) DM: where H i traces the dark matter and (ii) PR: where the effects of patchy reionization are incorporated through two parameters which are the bubble size and the clustering of the bubble centres relative to the dark matter (bias), respectively. We find that while the DM signal is largely featureless, the PR signal peaks at the angular scales of the individual bubbles where it is Poisson fluctuation dominated, and the signal is considerably enhanced for large bubble size. For most cases of interest at l∼ 100 the signal is uncorrelated beyond Δν∼ 1 MHz or even less, whereas this occurs around ∼0.1 MHz at l∼ 10 3 . The Δν dependence also carries an imprint of the bubble size and the bias, and is expected to be an important probe of the reionization scenario. Finally, we find that the l range 10 3 –10 4 is optimum for separating out the cosmological H i signal from the foregrounds, while this will be extremely demanding at l < 100 where it is necessary to characterize the Δν dependence of the foreground MAPS to an accuracy better than 1 per cent.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to The Royal Astronomical Society. |
Keywords: | Cosmology: Theory; Diffuse Radiation; Large-Scale Structure Of Universe. |
ID Code: | 116396 |
Deposited On: | 09 Apr 2021 08:51 |
Last Modified: | 09 Apr 2021 08:51 |
Repository Staff Only: item control page