Choudhuri, Samir ; Bharadwaj, Somnath ; Ghosh, Abhik ; Ali, Sk. Saiyad (2014) Visibility-based angular power spectrum estimation in low-frequency radio interferometric observations Monthly Notices of the Royal Astronomical Society, 445 (4). pp. 4351-4365. ISSN 0035-8711
Full text not available from this repository.
Official URL: http://doi.org/10.1093/mnras/stu2027
Related URL: http://dx.doi.org/10.1093/mnras/stu2027
Abstract
We present two estimators to quantify the angular power spectrum of the sky signal directly from the visibilities measured in radio interferometric observations. This is relevant for both the foregrounds and the cosmological 21-cm signal buried therein. The discussion here is restricted to the Galactic synchrotron radiation, the most dominant foreground component after point source removal. Our theoretical analysis is validated using simulations at 150 MHz, mainly for GMRT and also briefly for Low-Frequency Array. The Bare Estimator uses pairwise correlations of the measured visibilities, while the Tapered Gridded Estimator uses the visibilities after gridding in the uv plane. The former is very precise, but computationally expensive for large data. The latter has a lower precision, but takes less computation time which is proportional to the data volume. The latter also allows tapering of the sky response leading to sidelobe suppression, an useful ingredient for foreground removal. Both estimators avoid the positive bias that arises due to the system noise. We consider amplitude and phase errors of the gain, and the w-term as possible sources of errors. We find that the estimated angular power spectrum is exponentially sensitive to the variance of the phase errors but insensitive to amplitude errors. The statistical uncertainties of the estimators are affected by both amplitude and phase errors. The w-term does not have a significant effect at the angular scales of our interest. We propose the Tapered Gridded Estimator as an effective tool to observationally quantify both foregrounds and the cosmological 21-cm signal.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to The Royal Astronomical Society. |
Keywords: | Methods: Data Analysis; Methods: Statistical; Techniques: Interferometric; Diffuse Radiation. |
ID Code: | 116340 |
Deposited On: | 09 Apr 2021 04:47 |
Last Modified: | 09 Apr 2021 04:47 |
Repository Staff Only: item control page