Suresh, Venkata M. ; Bandyopadhyay, Arkamita ; Roy, Syamantak ; Pati, Swapan K. ; Maji, Tapas Kumar (2015) Highly luminescent microporous organic polymer with lewis acidic boron sites on the pore surface: ratiometric sensing and capture of F−ions Chemistry - A European Journal, 21 (30). pp. 10799-10804. ISSN 0947-6539
Full text not available from this repository.
Official URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/ch...
Related URL: http://dx.doi.org/10.1002/chem.201500406
Abstract
Reversible and selective capture/detection of F− ions in water is of the utmost importance, as excess intake leads to adverse effects on human health. Highly robust Lewis acidic luminescent porous organic materials have potential for efficient sequestration and detection of F− ions. Herein, the rational design and synthesis of a boron‐based, Lewis acidic microporous organic polymer (BMOP) derived from tris(4‐bromo‐2,3,5,6‐tetramethylphenyl)boron nodes and diethynylbiphenyl linkers with a pore size of 1.08 nm for selective turn‐on sensing and capture of F− ion are reported. The presence of a vacant pπ orbital on the boron center of BMOP results in intramolecular charge transfer (ICT) from the linker to boron. BMOP shows selective turn‐on blue emission for F− ions in aqueous mixtures with a detection limit of 2.6 μM. Strong B–F interactions facilitate rapid sequestration of F− by BMOP. The ICT emission of BMOP can be reversibly regenerated by addition of an excess of water, and the polymer can be reused several times.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to John Wiley and Sons, Inc. |
Keywords: | Boron; Lewis Acids; Microporous Materials; Polymers; Sensors |
ID Code: | 113133 |
Deposited On: | 30 May 2018 10:31 |
Last Modified: | 30 May 2018 10:31 |
Repository Staff Only: item control page