Metal–organic frameworks derived from bis-pyridyl-bis-amide ligands : Effect of positional isomerism of the ligands, hydrogen bonding backbone, counter anions on the supramolecular structures and selective crystallization of the sulfate anion

Adarsh, N. N. ; Krishna Kumar, D. ; Dastidar, Parthasarathi (2009) Metal–organic frameworks derived from bis-pyridyl-bis-amide ligands : Effect of positional isomerism of the ligands, hydrogen bonding backbone, counter anions on the supramolecular structures and selective crystallization of the sulfate anion CrystEngComm, 11 (5). pp. 796-802. ISSN 1466-8033

Full text not available from this repository.

Official URL: http://pubs.rsc.org/en/content/articlelanding/2009...

Related URL: http://dx.doi.org/10.1039/B816221B

Abstract

Three new metal–organic frameworks, namely [Co(μ-L1)2(Cl)2]n1, [Cd(µ-L1)2(NO3)2]n2 and [{Co(μ-L1′)(H2O)4}.SO4·3(H2O)]n3 (L1 = N,N′-bis-(4-pyridyl)isophthalamide, L1′ = N,N′-bis-(3-pyridyl)isophthalamide) have been synthesized and characterized. The single crystal structures of 1–3 and the free ligand L1 are discussed in the context of the effect of positional isomerism of the ligands, hydrogen bonding backbone and counter anions on the supramolecular structural diversities observed in these MOFs. Selective crystallization of the sulfate anion from a mixture of L1′, CoSO4, Co(NO3)2, Co(ClO4)2, Co(OAc)2, Co(BF4)2 was evident from the isolation of 3 which was confirmed by powder X-ray diffraction, elemental analysis and IR data.

Item Type:Article
Source:Copyright of this article belongs to Royal Society of Chemistry.
ID Code:112777
Deposited On:19 Apr 2018 10:53
Last Modified:19 Apr 2018 10:53

Repository Staff Only: item control page