Padiadpu, Jyothi ; Baloni, Priyanka ; Anand, Kushi ; Munshi, Mohamed Husen ; Thakur, Chandrani ; Mohan, Abhilash ; Singh, Amit ; Chandra, Nagasuma (2016) Identifying and tackling emergent vulnerability in drug-resistant mycobacteria ACS Infectious Diseases, 2 (9). pp. 592-607. ISSN 2373-8227
Full text not available from this repository.
Official URL: https://pubs.acs.org/doi/abs/10.1021/acsinfecdis.6...
Related URL: http://dx.doi.org/10.1021/acsinfecdis.6b00004
Abstract
The global mechanisms and associated molecular alterations that occur in drug-resistant mycobacteria are poorly understood. To address this, we obtain genomics data and then construct a genome-scale response network in isoniazid-resistant Mycobacterium smegmatis and apply a network-mining algorithm. Through this, we decipher global alterations in an unbiased manner and identify emergent vulnerabilities in resistant bacilli, of which redox response was prominent. Using phenotypic profiling, we find that resistant bacilli exhibit collateral sensitivity to several compounds that block antioxidant responses. We find that nanogram/milliliter concentrations of ebselen, vancomycin, and phenylarsine oxide, in combination with isoniazid, are highly effective against Mycobacterium tuberculosis H37Rv and three clinical drug-resistant strains. Dynamic measurements of cytoplasmic redox potential revealed a surprisingly diminished capacity of clinical drug-resistant strains to counteract oxidative stress, providing a mechanistic basis for efficient and synergistic mycobactericidal activity of the drug combinations. Ebselen and vancomycin appear to be promising repurposable drugs.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to American Chemical Society. |
Keywords: | Antioxidant Responses; Collateral Sensitivity; Drug Repurposing; Drug Resistance Mechanisms; Genome-Scale Networks; Systems Biology |
ID Code: | 112555 |
Deposited On: | 19 Apr 2018 05:03 |
Last Modified: | 19 Apr 2018 05:03 |
Repository Staff Only: item control page