The circle method and bounds for L-functions - I

Munshi, Ritabrata (2014) The circle method and bounds for L-functions - I Mathematische Annalen, 358 (1-2). pp. 389-401. ISSN 0025-5831

Full text not available from this repository.

Official URL: https://link.springer.com/article/10.1007/s00208-0...

Related URL: http://dx.doi.org/10.1007/s00208-013-0968-4

Abstract

Let f be a Hecke-Maass or holomorphic primitive cusp form of arbitrary level and nebentypus, and let χ be a primitive character of conductor M. For the twisted L-function L(s,f⊗χ) we establish the hybrid subconvex bound L(1/2+it,f⊗χ) ≪ (M(3+|t|))1/2−1/18+ε, for t∈ℝ. The implied constant depends only on the form f and ε.

Item Type:Article
Source:Copyright of this article belongs to Springer-Verlag.
ID Code:110770
Deposited On:31 Jan 2018 09:07
Last Modified:31 Jan 2018 09:07

Repository Staff Only: item control page