Munshi, Ritabrata (2014) The circle method and bounds for L-functions - I Mathematische Annalen, 358 (1-2). pp. 389-401. ISSN 0025-5831
Full text not available from this repository.
Official URL: https://link.springer.com/article/10.1007/s00208-0...
Related URL: http://dx.doi.org/10.1007/s00208-013-0968-4
Abstract
Let f be a Hecke-Maass or holomorphic primitive cusp form of arbitrary level and nebentypus, and let χ be a primitive character of conductor M. For the twisted L-function L(s,f⊗χ) we establish the hybrid subconvex bound L(1/2+it,f⊗χ) ≪ (M(3+|t|))1/2−1/18+ε, for t∈ℝ. The implied constant depends only on the form f and ε.
Item Type: | Article |
---|---|
Source: | Copyright of this article belongs to Springer-Verlag. |
ID Code: | 110770 |
Deposited On: | 31 Jan 2018 09:07 |
Last Modified: | 31 Jan 2018 09:07 |
Repository Staff Only: item control page