Onset of thermoacoustic instability in turbulent combustors: an emergence of synchronized periodicity through formation of chimera-like states

Mondal, Sirshendu ; Unni, Vishnu R. ; Sujith, R. I. (2017) Onset of thermoacoustic instability in turbulent combustors: an emergence of synchronized periodicity through formation of chimera-like states Journal of Fluid Mechanics, 811 . pp. 659-681. ISSN 0022-1120

Full text not available from this repository.

Official URL: https://www.cambridge.org/core/journals/journal-of...

Related URL: http://dx.doi.org/10.1017/jfm.2016.770

Abstract

Thermoacoustic systems with a turbulent reactive flow, prevalent in the fields of power and propulsion, are highly susceptible to oscillatory instabilities. Recent studies showed that such systems transition from combustion noise to thermoacoustic instability through a dynamical state known as intermittency, where bursts of large-amplitude periodic oscillations appear in a near-random fashion in between regions of low-amplitude aperiodic fluctuations. However, as these analyses were in the temporal domain, this transition remains still unexplored spatiotemporally. Here, we present the spatiotemporal dynamics during the transition from combustion noise to limit cycle oscillations in a turbulent bluff-body stabilized combustor. To that end, we acquire the pressure oscillations and the field of heat release rate oscillations through high-speed chemiluminescence (CH*) images of the reaction zone. With a view to get an insight into this complex dynamics, we compute the instantaneous phases between acoustic pressure and local heat release rate oscillations. We observe that the aperiodic oscillations during combustion noise are phase asynchronous, while the large-amplitude periodic oscillations seen during thermoacoustic instability are phase synchronous. We find something interesting during intermittency: patches of synchronized periodic oscillations and desynchronized aperiodic oscillations coexist in the reaction zone. In other words, the emergence of order from disorder happens through a dynamical state wherein regions of order and disorder coexist, resembling a chimera state. Generally, mutually coupled chaotic oscillators synchronize but retain their dynamical nature; the same is true for coupled periodic oscillators. In contrast, during intermittency, we find that patches of desynchronized aperiodic oscillations turn into patches of synchronized periodic oscillations and vice versa. Therefore, the dynamics of local heat release rate oscillations change from aperiodic to periodic as they synchronize intermittently. The temporal variations in global synchrony, estimated through the Kuramoto order parameter, echoes the breathing nature of a chimera state.

Item Type:Article
Source:Copyright of this article belongs to Cambridge University Press.
Keywords:Nonlinear Dynamical Systems; Nonlinear Instability; Turbulent Reacting Flows
ID Code:109909
Deposited On:21 Dec 2017 11:03
Last Modified:21 Dec 2017 11:03

Repository Staff Only: item control page