Optimizing photovoltaic response by tuning light-harvesting nanocrystal shape synthesized using a quick liquid–gas phase reaction

Mazumdar, Sayantan ; Tamilselvan, Muthusamy ; Bhattacharyya, Aninda J. (2015) Optimizing photovoltaic response by tuning light-harvesting nanocrystal shape synthesized using a quick liquid–gas phase reaction ACS Applied Materials & Interfaces, 7 (51). pp. 28188-28196. ISSN 1944-8244

Full text not available from this repository.

Official URL: http://pubs.acs.org/doi/abs/10.1021/acsami.5b08595

Related URL: http://dx.doi.org/10.1021/acsami.5b08595

Abstract

The electron recombination lifetime in a sensitized semiconductor assembly is greatly influenced by the crystal structure and geometric form of the light-harvesting semiconductor nanocrystal. When such light harvesters with varying structural characteristics are configured in a photoanode, its interface with the electrolyte becomes equally important and directly influences the photovoltaic efficiency. We have systematically probed here the influence of nanocrystal crystallographic structure and shape on the electron recombination lifetime and its eventual influence on the light to electricity conversion efficiency of a liquid junction semiconductor sensitized solar cell. The light-harvesting cadmium sulfide (CdS) nanocrystals of distinctly different and controlled shapes are obtained using a novel and simple liquid–gas phase synthesis method performed at different temperatures involving very short reaction times. High-resolution synchrotron X-ray diffraction and spectroscopic studies respectively exhibit different crystallographic phase content and optical properties. When assembled on a mesoscopic TiO2 film by a linker molecule, they exhibit remarkable variation in electron recombination lifetime by 1 order of magnitude, as determined by ac-impedance spectroscopy. This also drastically affects the photovoltaic efficiency of the differently shaped nanocrystal sensitized solar cells.

Item Type:Article
Source:Copyright of this article belongs to American Chemical Society.
Keywords:AC-impedance Spectroscopy; Liquid-gas Phase Reaction; Nanocrystals with Mixed Crystal Phases and Shape; Photoanode; Recombination Resistance and Electron Lifetime; Sensitized Solar Cell
ID Code:109201
Deposited On:22 Dec 2017 10:16
Last Modified:26 Dec 2017 06:35

Repository Staff Only: item control page