The physics of antineutrinos in DUNE and determination of octant and δCP

Nath, Newton ; Ghosh, Monojit ; Goswami, Srubabati (2016) The physics of antineutrinos in DUNE and determination of octant and δCP Nuclear Physics B, 913 . pp. 381-404. ISSN 0550-3213

[img]
Preview
PDF
793kB

Official URL: http://www.sciencedirect.com/science/article/pii/S...

Related URL: http://dx.doi.org/10.1016/j.nuclphysb.2016.09.017

Abstract

The octant of the leptonic mixing angle θ23 and the CP phase δCP are the two major unknowns (apart from neutrino mass hierarchy) in neutrino oscillation physics. It is well known that the precise determination of octant and δCP is interlinked through the octant-δCP degeneracy. In this paper we study the proficiency of the DUNE experiment to determine these parameters scrutinizing, in particular, the role played by the antineutrinos, the broadband nature of the beam and the matter effect. It is well known that for Pμe and Pμe the octant-δCP degeneracy occurs at different values of δCP, combination of neutrino and antineutrino runs help to resolve this. However, in regions where neutrinos do not have octant degeneracy adding antineutrino data is expected to decrease the sensitivity because of the degeneracy and reduced statistics. However we find that in case of DUNE baseline, the antineutrino runs help even in parameter space where the antineutrino probabilities suffer from degeneracies. We explore this point in detail and point out that this happens because of the (i) broad-band nature of the beam so that even if there is degeneracy at a particular energy bin, over the whole spectrum the degeneracy may not be there; (ii) the enhanced matter effect due to the comparatively longer baseline which creates an increased tension between the neutrino and the antineutrino probabilities which raises the overall χ2 in case of combined runs. This feature is more prominent for IH since the antineutrino probabilities in this case are much higher than the neutrino probabilities due to matter effects. The main role of antineutrinos in enhancing CP sensitivity is their ability to remove the octant-δCP degeneracy. However even if one assumes octant to be known the addition of antineutrinos can give enhanced CP sensitivity in some parameter regions due to the tension between the neutrino and antineutrino χ2s.

Item Type:Article
Source:Copyright of this article belongs to Elsevier Science.
ID Code:108864
Deposited On:01 Feb 2018 04:48
Last Modified:01 Feb 2018 04:48

Repository Staff Only: item control page